1 Get Started
 1.1 Installation ... 3
 1.2 Demo .. 3
 1.3 Reproduce our results on COCO ... 4
 1.4 Evaluation ... 4

2 Model Zoo
 2.1 Standard Models... 5
 2.2 Light Models ... 5

3 Train Custom Data
 3.1 0. Before you start ... 7
 3.2 1. Create your own dataset ... 7
 3.3 2. Create your Exp file to control everything ... 8
 3.4 3. Train ... 8
 3.5 4. Tips for Best Training Results ... 9

4 YOLOX-TensorRT in Python
 4.1 Install TensorRT Toolkit ... 11
 4.2 Convert model ... 11
 4.3 Demo .. 12

5 YOLOX-TensorRT in C++
 5.1 Step 1: Prepare serialized engine file ... 13
 5.2 Step 2: build the demo ... 13

6 YOLOX-CPP-MegEngine
 6.1 Tutorial ... 15
 6.2 Benchmark ... 18
 6.3 Acknowledgement ... 18

7 YOLOX-Python-MegEngine
 7.1 Tutorial ... 19

8 YOLOX-Android-ncnn
 8.1 Tutorial ... 21
 8.2 Reference ... 21

9 YOLOX-CPP-ncnn
 9.1 Tutorial ... 23
 9.2 Acknowledgement ... 25
10 YOLOX-ONNXRuntime in Python
 10.1 Download ONNX models. ... 27
 10.2 Convert Your Model to ONNX .. 27
 10.3 ONNXRuntime Demo ... 28

11 YOLOX-OpenVINO in Python
 11.1 Download OpenVINO models. ... 29
 11.2 Install OpenVINO Toolkit ... 29
 11.3 Set up the Environment ... 29
 11.4 Convert model .. 30
 11.5 Demo .. 30

12 YOLOX-OpenVINO in C++
 12.1 Download OpenVINO models. ... 31
 12.2 Install OpenVINO Toolkit ... 31
 12.3 Set up the Environment ... 31
 12.4 Convert model .. 32
 12.5 Build .. 32
 12.6 Demo .. 32
1.1 1. Installation

Step 1. Install YOLOX.

```
git clone git@github.com:Megvii-BaseDetection/YOLOX.git
cd YOLOX
pip3 install -U pip && pip3 install -r requirements.txt
pip3 install -v -e .  # or python3 setup.py develop
```

Step 2. Install pycocotools.

```
pip3 install cython; pip3 install 'git+https://github.com/cocodataset/cocoapi.git
  #subdirectory=PythonAPI'
```

1.2 2. Demo

Step 1. Download a pretrained model from the benchmark table.

Step 2. Use either -n or -f to specify your detector’s config. For example:

```
python tools/demo.py image -n yolox-s -c /path/to/your/yolox_s.pth --path assets/dog.jpg --conf 0.25 --nms 0.45 --tsize 640 --save_result --device [cpu/gpu]
```

or

```
python tools/demo.py image -f exps/default/yolox_s.py -c /path/to/your/yolox_s.pth --path assets/dog.jpg --conf 0.25 --nms 0.45 --tsize 640 --save_result --device [cpu/gpu]
```

Demo for video:

```
python tools/demo.py video -n yolox-s -c /path/to/your/yolox_s.pth --path /path/to/your/video --conf 0.25 --nms 0.45 --tsize 640 --save_result --device [cpu/gpu]
```
1.3 3. Reproduce our results on COCO

Step 1. Prepare COCO dataset

```bash
cd <YOLOX_HOME>
ln -s /path/to/your/COCO ./datasets/COCO
```

Step 2. Reproduce our results on COCO by specifying -n:

```bash
python tools/train.py -n yolox-s -d 8 -b 64 --fp16 -o [--cache]
yolox-m
yolox-l
yolox-x
```

- `-d`: number of GPU devices
- `-b`: total batch size, the recommended number for `-b` is `num-gpu * 8`
- `--fp16`: mixed precision training
- `--cache`: caching images into RAM to accelerate training, which need large system RAM.

Multi Machine Training

We also support multi-nodes training. Just add the following args:

- `--num_machines`: number of your total training nodes
- `--machine_rank`: specify the rank of each node

When using `-f`, the above commands are equivalent to:

```bash
python tools/train.py -f exps/default/yolox-s.py -d 8 -b 64 --fp16 -o [--cache]
exps/default/yolox-m.py
exps/default/yolox-l.py
exps/default/yolox-x.py
```

1.4 4. Evaluation

We support batch testing for fast evaluation:

```bash
python tools/eval.py -n yolox-s -c yolox_s.pth -b 64 -d 8 --conf 0.001 [--fp16] [--fuse]
yolox-m
yolox-l
yolox-x
```

- `--fuse`: fuse conv and bn
- `-d`: number of GPUs used for evaluation. DEFAULT: All GPUs available will be used.
- `-b`: total batch size across all GPUs

To reproduce speed test, we use the following command:

```bash
python tools/eval.py -n yolox-s -c yolox_s.pth -b 1 -d 1 --conf 0.001 --fp16 --fuse
yolox-m
yolox-l
yolox-x
```
2.1 Standard Models.

2.2 Light Models.
This page explains how to train your own custom data with YOLOX. We take an example of fine-tuning YOLOX-S model on VOC dataset to give a more clear guide.

3.1 0. Before you start

Clone this repo and follow the README to install YOLOX.

3.2 1. Create your own dataset

Step 1 Prepare your own dataset with images and labels first. For labeling images, you can use tools like Labelme or CVAT.

Step 2 Then, you should write the corresponding Dataset Class which can load images and labels through `__getitem__` method. We currently support COCO format and VOC format.

You can also write the Dataset by your own. Let’s take the VOC Dataset file for example:

```python
@Dataset.resize_getitem
def __getitem__(self, index):
    img, target, img_info, img_id = self.pull_item(index)

    if self.preproc is not None:
        img, target = self.preproc(img, target, self.input_dim)

    return img, target, img_info, img_id
```

One more thing worth noting is that you should also implement `pull_item` and `load_anno` method for the `Mosiac` and `MixUp` augmentations.

Step 3 Prepare the evaluator. We currently have COCO evaluator and VOC evaluator. If you have your own format data or evaluation metric, you can write your own evaluator.

Step 4 Put your dataset under `$YOLOX_DIR/datasets`, for VOC:

```
ln -s /path/to/your/VOCdevkit ./datasets/VOCdevkit
```

- The path “VOCdevkit” will be used in your exp file described in next section. Specifically, in `get_data_loader` and `get_eval_loader` function.
You can download the mini-coco128 dataset by the link, and then unzip it to the datasets directory. The dataset has been converted from YOLO format to COCO format, and can be used directly as a dataset for testing whether the train environment can be runned successfully.

3.3 2. Create your Exp file to control everything

We put everything involved in a model to one single Exp file, including model setting, training setting, and testing setting.

A complete Exp file is at yolox_base.py. It may be too long to write for every exp, but you can inherit the base Exp file and only overwrite the changed part.

Let’s take the VOC Exp file as an example.

We select YOLOX-S model here, so we should change the network depth and width. VOC has only 20 classes, so we should also change the num_classes.

These configs are changed in the init() method:

```python
class Exp(MyExp):
    def __init__(self):
        super(Exp, self).__init__()
        self.num_classes = 20
        self.depth = 0.33
        self.width = 0.50
        self.exp_name = os.path.split(os.path.realpath(__file__))[1].split(".")[0]
```

Besides, you should also overwrite the dataset and evaluator, prepared before training the model on your own data.

Please see get_data_loader, get_eval_loader, and get_evaluator for more details.

You can also see the exps/example/custom directory for more details.

3.4 3. Train

Except special cases, we always recommend to use our COCO pretrained weights for initializing the model.

Once you get the Exp file and the COCO pretrained weights we provided, you can train your own model by the following below command:

```
python tools/train.py -f /path/to/your/Exp/file -d 8 -b 64 --fp16 -o -c /path/to/the/pretrained/weights [--cache]
```

- `-cache`: we now support RAM caching to speed up training! Make sure you have enough system RAM when adopting it.

or take the YOLOX-S VOC training for example:

```
python tools/train.py -f exps/example/yolox_voc/yolox_voc_s.py -d 8 -b 64 --fp16 -o -c /path/to/yolox_s.pth [--cache]
```

For example:

- If you download the mini-coco128 and unzip it to the datasets, you can direct run the following training code.
3.5. 4. Tips for Best Training Results

As YOLOX is an anchor-free detector with only several hyper-parameters, most of the time good results can be obtained with no changes to the models or training settings. We thus always recommend you first train with all default training settings.

If at first you don’t get good results, there are steps you could consider to improve the model.

Model Selection We provide YOLOX-Nano, YOLOX-Tiny, and YOLOX-S for mobile deployments, while YOLOX-M/L/X for cloud or high performance GPU deployments.

If your deployment meets any compatibility issues, we recommend YOLOX-DarkNet53.

Training Configs If your training overfits early, then you can reduce max_epochs or decrease the base_lr and min_lr_ratio in your Exp file:

```python
# -------------- training config --------------------- #
self.warmup_epochs = 5
self.max_epoch = 300
self.warmup_lr = 0
self.basic_lr_per_img = 0.01 / 64.0
self.scheduler = "yoloxwarmcos"
self.no_aug_epochs = 15
self.min_lr_ratio = 0.05
self.ema = True

self.weight_decay = 5e-4
self.momentum = 0.9
```

Aug Configs You may also change the degree of the augmentations.

Generally, for small models, you should weak the aug, while for large models or small size of dataset, you may enhance the aug in your Exp file:

```python
# -------------- transform config ----------------- #
self.degrees = 10.0
self.translate = 0.1
self.scale = (0.1, 2)
self.mosaic_scale = (0.8, 1.6)
self.shear = 2.0
self.perspective = 0.0
self.enable_mixup = True
```

Design your own detector You may refer to our Arxiv paper for details and suggestions for designing your own detector.
4.1 Install TensorRT Toolkit

Please follow the TensorRT Installation Guide and torch2trt gitrepo to install TensorRT and torch2trt.

4.2 Convert model

YOLOX models can be easily conveted to TensorRT models using torch2trt
If you want to convert our model, use the flag -n to specify a model name:

```
python tools/trt.py -n <YOLOX_MODEL_NAME> -c <YOLOX_CHECKPOINT>
```

For example:

```
python tools/trt.py -n yolox-s -c your_ckpt.pth
```

<YOLOX_MODEL_NAME> can be: yolox-nano, yolox-tiny, yolox-s, yolox-m, yolox-l, yolox-x.
If you want to convert your customized model, use the flag -f to specify you exp file:

```
python tools/trt.py -f <YOLOX_EXP_FILE> -c <YOLOX_CHECKPOINT>
```

For example:

```
python tools/trt.py -f /path/to/your/yolox/exps/yolox_s.py -c your_ckpt.pth
```

_yolox_s.py can be any exp file modified by you.
The converted model and the serialized engine file (for C++ demo) will be saved on your experiment output dir.
4.3 Demo

The TensorRT python demo is merged on our pytorch demo file, so you can run the pytorch demo command with --trt.

```
python tools/demo.py image -n yolox-s --trt --save_result
```

or

```
python tools/demo.py image -f exps/default/yolox_s.py --trt --save_result
```
As YOLOX models are easy to convert to tensorrt using torch2trt gitrepo, our C++ demo does not include the model converting or constructing like other tensorrt demos.

5.1 Step 1: Prepare serialized engine file

Follow the trt python demo README to convert and save the serialized engine file.

Check the ‘model_trt.engine’ file generated from Step 1, which will be automatically saved at the current demo dir.

5.2 Step 2: build the demo

Please follow the TensorRT Installation Guide to install TensorRT.

And you should set the TensorRT path and CUDA path in CMakeLists.txt.

If you train your custom dataset, you may need to modify the value of `num_class`.

```cpp
const int num_class = 80;
```

Install opencv with `sudo apt-get install libopencv-dev` (we don’t need a higher version of opencv like v3.3+).

build the demo:

```bash
mkdir build
cd build
cmake ..
make
```

Then run the demo:

```bash
./yolox ../model_trt.engine -i ../../../assets/dog.jpg
```

or

```bash
./yolox <path/to/your/engine_file> -i <path/to/image>
```
Cpp file compile of YOLOX object detection base on MegEngine.

6.1 Tutorial

6.1.1 Step1: install toolchain

- host: sudo apt install gcc/g++ (gcc/g++, which version >= 6) build-essential git
 → git-lfs gfortran libgfortran-6-dev autoconf gnupg flex bison gperf curl zlib1g-dev
 → gcc-multilib g++-multilib cmake

- cross build android: download NDK
 - after unzip download NDK, then export NDK_ROOT="path of NDK"

6.1.2 Step2: build MegEngine

```
git clone https://github.com/MegEngine/MegEngine.git

# then init third_party

export megengine_root="path of MegEngine"
cd $megengine_root && ./third_party/prepare.sh && ./third_party/install-mkl.sh

# build example:
# build host without cuda:
./scripts/cmake-build/host_build.sh
# or build host with cuda:
./scripts/cmake-build/host_build.sh -c
# or cross build for android aarch64:
./scripts/cmake-build/cross_build_android_arm_inference.sh
# or cross build for android aarch64(with V8.2+fp16):
./scripts/cmake-build/cross_build_android_arm_inference.sh -f

# after build MegEngine, you need export the `MGE_INSTALL_PATH`
# host without cuda:
export MGE_INSTALL_PATH=$(megengine_root)/build_dir/host/MGE_WITH_CUDA_OFF/MGE_
  → INFERENCE_ONLY_ON/Release/install
# or host with cuda:
export MGE_INSTALL_PATH=$(megengine_root)/build_dir/host/MGE_WITH_CUDA_ON/MGE_
  → INFERENCE_ONLY_ON/Release/install
```

(continues on next page)
or cross build for android aarch64:
export MGE_INSTALL_PATH=${megengine_root}/build_dir/android/arm64-v8a/Release/install

- you can refs build tutorial of MegEngine to build other platform, eg, windows/macos/ etc!

6.1.3 Step3: build OpenCV

```bash
git clone https://github.com/opencv/opencv.git
git checkout 3.4.15 (we test at 3.4.15, if test other version, may need modify some...

• patch diff for android:

```bash
```
diff --git a/CMakeLists.txt b/CMakeLists.txt
index f6a2da5310..10354312c9 100644
--- a/CMakeLists.txt
+++ b/CMakeLists.txt
@@ -643,7 +643,7 @@ if(UNIX)
if(NOT APPLE)
CHECK_INCLUDE_FILE(pthread.h HAVE_PTHREAD)
if(ANDROID)
- set(OPENCV_LINKER_LIBS ${OPENCV_LINKER_LIBS} dl m log)
+ set(OPENCV_LINKER_LIBS ${OPENCV_LINKER_LIBS} dl m log z)
elseif(CMAKE_SYSTEM_NAME MATCHES "FreeBSD|NetBSD|DragonFly|OpenBSD|Haiku")
set(OPENCV_LINKER_LIBS ${OPENCV_LINKER_LIBS} m pthread)
elseif(EMSCRIPTEN)
```

• build for host

```bash
cd root_dir_of_opencv
mkdir -p build/install
cd build
cmake -DBUILD_JAVA=OFF -DBUILD_SHARED_LIBS=ON -DCMAKE_INSTALL_PREFIX=$PWD/install
make install -j32
```

• build for android-aarch64

```bash
cd root_dir_of_opencv
mkdir -p build_android/install
cd build_android
cmake -DCMAKE_TOOLCHAIN_FILE="$NDK_ROOT/build/cmake/android.toolchain.cmake" -
-ND Donovan="$NDK_ROOT" -DANDROID_ABI=arm64-v8a -DANDROID_NATIVE_API_LEVEL=21 -
-DBUILD_JAVA=OFF -DBUILD_ANDROID_PROJECTS=OFF -DBUILD_ANDROID_EXAMPLES=OFF -DBUILD_-
-REACHED_LIBS=ON -DCMAKE_INSTALL_PREFIX=$PWD/install ..
make install -j32
```

• after build OpenCV, you need export OPENCV_INSTALL_INCLUDE_PATH and
 OPENCV_INSTALL_LIB_PATH

16 Chapter 6. YOLOX-CPP-MegEngine
host build:
export OPENCV_INSTALL_INCLUDE_PATH=${path of opencv}/build/install/include
export OPENCV_INSTALL_LIB_PATH=${path of opencv}/build/install/lib
or cross build for android aarch64:
export OPENCV_INSTALL_INCLUDE_PATH=${path of opencv}/build_android/install/sdk/native/
˓→jni/include
export OPENCV_INSTALL_LIB_PATH=${path of opencv}/build_android/install/sdk/native/
˓→libs/arm64-v8a

6.1.4 Step4: build test demo

run build.sh

if host:
export CXX=g++
./build.sh
or cross android aarch64
export CXX=aarch64-linux-android21-clang++
./build.sh

6.1.5 Step5: run demo

Note: two ways to get yolox_s.mge model file
• reference to python demo's dump.py script.
• For users with code before 0.1.0 version, wget yolox-s weights here.
• For users with code after 0.1.0 version, use python code in megengine to generate mge file.

if host:
LD_LIBRARY_PATH=$MGE_INSTALL_PATH/lib/:$OPENCV_INSTALL_LIB_PATH ./yolox yolox_s.mge ..
˓→/../../assets/dog.jpg cuda/cpu/multithread <warmup_count> <thread_number>

or cross android
adb push/scp $MGE_INSTALL_PATH/lib/libmegengine.so android_phone
adb push/scp $OPENCV_INSTALL_LIB_PATH/*.so android_phone
adb push/scp ./yolox yolox_s.mge android_phone
adb push/scp ../../../assets/dog.jpg android_phone

login in android_phone by adb or ssh
then run:
LD_LIBRARY_PATH=. ./yolox yolox_s.mge dog.jpg cpu/multithread <warmup_count> <thread_
˓→-number> <use_fast_run> <use_weight_preprocess> <run_with_fp16>

* <warmup_count> means warmup count, valid number >=0
* <thread_number> means thread number, valid number >=1, only take effect_˓→'multithread' device
* <use_fast_run> if >=1 , will use fastrun to choose best algo
* <use_weight_preprocess> if >=1, will handle weight preprocess before exe
* <run_with_fp16> if >=1, will run with fp16 mode
6.2 Benchmark

- model info: yolox-s @ input(1,3,640,640)
- test devices

<table>
<thead>
<tr>
<th>device</th>
<th>info</th>
</tr>
</thead>
<tbody>
<tr>
<td>x86_64</td>
<td>Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz</td>
</tr>
<tr>
<td>aarch64</td>
<td>xiamo phone mi9</td>
</tr>
<tr>
<td>cuda</td>
<td>1080TI @ cuda-10.1-cudnn-v7.6.3-TensorRT-6.0.1.5.sh @ Intel(R) Xeon(R)</td>
</tr>
<tr>
<td></td>
<td>CPU E5-2620 v4 @ 2.10GHz</td>
</tr>
</tbody>
</table>

6.3 Acknowledgement
7.1 Tutorial

7.1.1 Step1: install requirements

```
python3 -m pip install megengine -f https://megengine.org.cn/whl/mge.html
```

7.1.2 Step2: convert checkpoint weights from torch’s path file

```
python3 convert_weights.py -w yolox_s.pth -o yolox_s_mge.pkl
```

7.1.3 Step3: run demo

This part is the same as torch’s python demo, but no need to specify device.

```
python3 demo.py image -n yolox-s -c yolox_s_mge.pkl --path ../../../assets/dog.jpg --conf 0.25 --nms 0.45 --tsize 640 --save_result
```

7.1.4 [Optional]Step4: dump model for cpp inference

Note: result model is dumped with optimize_for_inference and enable_fuse_conv_bias_nonlinearity.

```
python3 dump.py -n yolox-s -c yolox_s_mge.pkl --dump_path yolox_s.mge
```
Andoid app of YOLOX object detection base on ncnn

8.1 Tutorial

8.1.1 Step1

Download ncnn-android-vulkan.zip from releases of ncnn. This repo uses 20210525 release for building.

8.1.2 Step2

After downloading, please extract your zip file. Then, there are two ways to finish this step:

- put your extracted directory into app/src/main/jni
- change the ncnn_DIR path in app/src/main/jni/CMakeLists.txt to your extracted directory

8.1.3 Step3

Download example param and bin file from onedrive or github. Unzip the file to app/src/main/assets.

8.1.4 Step4

Open this project with Android Studio, build it and enjoy!

8.2 Reference
CHAPTER NINE

YOLOX-CPP-NCNN

Cpp file compile of YOLOX object detection base on ncnn. YOLOX is included in ncnn now, you could also try building from ncnn, it’s better.

9.1 Tutorial

9.1.1 Step1

Clone ncnn first, then please following build tutorial of ncnn to build on your own device.

9.1.2 Step2

Use provided tools to generate onnx file. For example, if you want to generate onnx file of yolox-s, please run the following command:

```
  cd <path of yolox>
  python3 tools/export_onnx.py -n yolox-s
```

Then, a yolox.onnx file is generated.

9.1.3 Step3

Generate ncnn param and bin file.

```
  cd <path of ncnn>
  cd build/tools/ncnn
  ./onnx2ncnn yolox.onnx model.param model.bin
```

Since Focus module is not supported in ncnn. Warnings like:

```
Unsupported slice step !
```

will be printed. However, don’t worry! C++ version of Focus layer is already implemented in yolox.cpp.
9.1.4 Step4

Open `model.param`, and modify it. Before (just an example):

| 295 328 |
| Input images 0 1 images |
| Split splitncnn_input0 1 4 images images_splitncnn_0 images_splitncnn_1 images_splitncnn_2 images_splitncnn_3 |
| Crop Slice_4 1 1 images_splitncnn_3 647 -23309=1,0 -23310=1,1 |
| Crop Slice_9 1 1 647 652 -23309=1,0 -23310=1,12147483647 -23311=1,2 |
| Crop Slice_14 1 1 657 662 -23309=1,1 -23310=1,12147483647 -23311=1,2 |
| Crop Slice_19 1 1 667 672 -23309=1,1 -23310=1,12147483647 -23311=1,2 |
| Crop Slice_24 1 1 677 682 -23309=1,1 -23310=1,12147483647 -23311=1,2 |
| Crop Slice_29 1 1 687 692 -23309=1,1 -23310=1,12147483647 -23311=1,2 |
| Crop Slice_34 1 1 697 702 -23309=1,1 -23310=1,12147483647 -23311=1,2 |
| Crop Slice_39 1 1 707 712 -23309=1,1 -23310=1,12147483647 -23311=1,2 |
| Concat Concat_40 4 1 652 672 662 682 683 0=0 |

- Change first number for 295 to 295 - 9 = 286 (since we will remove 10 layers and add 1 layers, total layers number should minus 9).
- Then remove 10 lines of code from Split to Concat, but remember the last but 2nd number: 683.
- Add YoloV5Focus layer After Input (using previous number 683):

```
YoloV5Focus  focus  1 1 images 683
```

After (just an example):

| 286 328 |
| Input images 0 1 images |
| YoloV5Focus focus 1 1 images 683 |

9.1.5 Step5

Use `ncnn_optimize` to generate new param and bin:

```
# suppose you are still under ncnn/build/tools/ncnn dir.
../ncnn_optimize model.param model.bin yolox.param yolox.bin 65536
```
9.1.6 Step6

Copy or Move yolox.cpp file into ncnn/examples, modify the CMakeList.txt, then build yolox

9.1.7 Step7

Inference image with executable file yolox, enjoy the detect result:

```bash
./yolox demo.jpg
```

9.2 Acknowledgement
YOLOX-ONNXRUNTIME IN PYTHON

This doc introduces how to convert your pytorch model into onnx, and how to run an onnxruntime demo to verify your conversion.

10.1 Download ONNX models.

10.2 Convert Your Model to ONNX

First, you should move to `<YOLOX_HOME>` by:

```
cd <YOLOX_HOME>
```

Then, you can:

1. Convert a standard YOLOX model by `-n`:

```
python3 tools/export_onnx.py --output-name yolox_s.onnx -n yolox-s -c yolox_s.pth
```

Notes:

- `-n`: specify a model name. The model name must be one of the `[yolox-s,m,l,x and yolox-tiny, yolov3]`
- `-c`: the model you have trained
- `-o`: opset version, default 11. However, if you will further convert your onnx model to OpenVINO, please specify the opset version to 10.
- `--no-onnxsim`: disable onnxsim
- To customize an input shape for onnx model, modify the following code in tools/export.py:

```
dummy_input = torch.randn(1, 3, exp.test_size[0], exp.test_size[1])
```

1. Convert a standard YOLOX model by `-f`. When using `-f`, the above command is equivalent to:

```
python3 tools/export_onnx.py --output-name yolox_s.onnx -f exps/default/yolox_s.py -c -y yolox_s.pth
```

1. To convert your customized model, please use `-f`:

```
python3 tools/export_onnx.py --output-name your_yolox.onnx -f exps/your_dir/your_yolox.py -c your_yolox.pth
```
10.3 ONNXRuntime Demo

Step 1.

```
cd <YOLOX_HOME>/demo/ONNXRuntime
```

Step 2.

```
python3 onnx_inference.py -m <ONNX_MODEL_PATH> -i <IMAGE_PATH> -o <OUTPUT_DIR> -s 0.3
–input_shape 640,640
```

Notes:

- `-m`: your converted onnx model
- `-i`: input_image
- `-s`: score threshold for visualization.
- `–input_shape`: should be consistent with the shape you used for onnx conversion.
YOLOX-OPENVINO IN PYTHON

This tutorial includes a Python demo for OpenVINO, as well as some converted models.

11.1 Download OpenVINO models.

11.2 Install OpenVINO Toolkit

Please visit Openvino Homepage for more details.

11.3 Set up the Environment

11.3.1 For Linux

Option1. Set up the environment temporarily. You need to run this command every time you start a new shell window.

```bash
source /opt/intel/openvino_2021/bin/setupvars.sh
```

Option2. Set up the environment permanently.

Step1. For Linux:

```bash
vim ~/.bashrc
```

Step2. Add the following line into your file:

```bash
source /opt/intel/openvino_2021/bin/setupvars.sh
```

Step3. Save and exit the file, then run:

```bash
source ~/.bashrc
```
11.4 Convert model

1. Export ONNX model
 Please refer to the ONNX tutorial. Note that you should set --opset to 10, otherwise your next step will fail.

2. Convert ONNX to OpenVINO

   ```
   cd <INSTALL_DIR>/openvino_2021/deployment_tools/model_optimizer
   ```

 Install requirements for convert tool

   ```
   sudo ./install_prerequisites/install_prerequisites_onnx.sh
   ```

 Then convert model.

   ```
   python3 mo.py --input_model <ONNX_MODEL> --input_shape <INPUT_SHAPE> [--data_type FP16]
   ```

 For example:

   ```
   python3 mo.py --input_model yolox.onnx --input_shape [1,3,640,640] --data_type FP16 --output_dir converted_output
   ```

11.5 Demo

11.5.1 python

```python openvino_inference.py -m <XML_MODEL_PATH> -i <IMAGE_PATH>
``` 

or

```python openvino_inference.py -m <XML_MODEL_PATH> -i <IMAGE_PATH> -o <OUTPUT_DIR> -s <SCORE_THR> -d <DEVICE>
```
This tutorial includes a C++ demo for OpenVINO, as well as some converted models.

12.1 Download OpenVINO models.

12.2 Install OpenVINO Toolkit

Please visit Openvino Homepage for more details.

12.3 Set up the Environment

12.3.1 For Linux

Option1. Set up the environment tempororally. You need to run this command everytime you start a new shell window.

```
source /opt/intel/openvino_2021/bin/setupvars.sh
```

Option2. Set up the environment permenantly.

Step 1. For Linux:

```
vim ~/.bashrc
```

Step 2. Add the following line into your file:

```
source /opt/intel/openvino_2021/bin/setupvars.sh
```

Step 3. Save and exit the file, then run:

```
source ~/.bashrc
```
12.4 Convert model

1. Export ONNX model
 Please refer to the ONNX tutorial. Note that you should set --opset to 10, otherwise your next step will fail.

2. Convert ONNX to OpenVINO

 cd `<INSTSL_DIR>/openvino_2021/deployment_tools/model_optimizer`

 Install requirements for convert tool

 `sudo ./install_prerequisites/install_prerequisites_onnx.sh`

 Then convert model.

 `python3 mo.py --input_model <ONNX_MODEL> --input_shape <INPUT_SHAPE> [--data_type=FP16]`

 For example:

 `python3 mo.py --input_model yolox_tiny.onnx --input_shape [1,3,416,416] --data_type=FP16`

 Make sure the input shape is consistent with those in cpp file.

12.5 Build

12.5.1 Linux

 `source /opt/intel/openvino_2021/bin/setupvars.sh`
 `mkdir build`
 `cd build`
 `cmake ..`
 `make`

12.6 Demo

12.6.1 c++

 `./yolox_openvino <XML_MODEL_PATH> <IMAGE_PATH> <DEVICE>`